RESEARCH PAPERS

Acta Cryst. (1997). A53, 749-762

Relativistic X-ray Elastic Scattering Factors for Neutral Atoms Z = 1-54 from Multiconfiguration Dirac–Fock Wavefunctions in the 0–12 Å⁻¹ sin θ/λ Range, and Six-Gaussian Analytical Expressions in the 0–6 Å⁻¹ Range

ZHENGWEI SU AND PHILIP COPPENS*

Department of Chemistry, Natural Sciences Complex, State University of New York at Buffalo, Buffalo, New York 14260-3000, USA. E-mail: coppens@acsu.buffalo.edu

(Received 16 December 1996; accepted 20 March 1997)

Abstract

X-ray elastic scattering factors for the ground-state atoms H to Xe have been calculated from the relativistic wavefunctions in the 0–12 Å⁻¹ sin θ/λ range and fitted in the 0-6 Å⁻¹ sin θ/λ range to a sum of six Gaussian functions for three different $\sin \theta / \lambda$ ranges. More than one configuration was included for elements with several electronic configurations having the same subshell occupancy. The resulting parameterized scattering factors are significantly more accurate than those previously published. Separate core- and valence-electron scattering values have also been obtained. The relativistic atomic energies, the atomic second moments and the limiting values of the electron scattering factor as $\sin \theta / \lambda$ approaches zero have been tabulated. The wavefunctions were calculated with the GRASP92 program package [Parpia, Froese Fischer & Grant (1996). Comput. Phys. Commun. 94, 249–271] with the optimal level (OL) model rather than with the extended average level (EAL) model used in previous calculations [Rez, Rez & Grant (1994). Acta Cryst. A50, 481–497].

1. Introduction

Recently, Wang, Smith, Bunge & Jáuregui (1996) published relativistic X-ray scattering factors for He–Ar from multiconfiguration Dirac–Hartree–Fock calculations. The authors note that, in order to get reliable differences between relativistic and non-relativistic scattering factors, multiconfiguration calculations must be performed for some of the open-shell atoms. Although X-ray scattering factors for the elements H–Cf based on multiconfiguration wavefunctions from the average level model have been reported (Su & Coppens, 1994; Rez, Rez & Grant, 1994), they do not correspond to the optimized ground states of the atoms. We have therefore extended the work of Wang *et al.* to the elements beyond Ar, up to Xe, using atomic wavefunctions obtained with the optimal level (OL) model and the program *GRASP*22 (Parpia, Froese Fischer & Grant, 1996). We have used finite spherical nuclear charges, rather than point-charge nuclei, with the Fermi radial distribution for all elements, except for H and He. As the atomic number increases, the effect of the use of a finite nucleus increases, as pointed out by Grant (1970). The resulting scattering factors have been fitted in the 0-6 Å⁻¹ range by a sum of Gaussian functions. The fitting functions are highly accurate and suitable for advanced diffraction studies.

2. Calculations of atomic wavefunctions and scattering factors

The program package *GRASP*92 (Parpia, Froese Fischer & Grant, 1996) was kindly provided by Dr F. A. Parpia. It was slightly modified to run on a Sun Sparcstation with the Solaris 2 operating system.

The ground-state electron configurations and terms and the average atomic weights of the elements used for the nuclear size calculation were taken from the literature (Lide, 1996; Emsley, 1996). Only the *J* value corresponding to the ground-state term was used to generate the relativistic configuration state functions (CSF). 25 of the 54 elements included in this work required more than one CSF in representing the ground-state atomic state functions (ASF), they are the elements in the ranges C–O, Si–S, Ti–Ni, Ge–Se, Zr–Rh and Sn–Te. The use of the OL model is more computationally expensive than that of the EAL (extended average level) model, but has the advantage of giving the optimized wavefunctions for the ground-state atomic state functions and, therefore, more accurate results.

Subroutines were added to the program package that convert the wavefunctions into densities, calculate the X-ray elastic scattering factors $f(\sin \theta/\lambda)$ and the atomic second moments $\langle r^2 \rangle$, using the expressions

$$f(\sin\theta/\lambda) = \int_{0}^{\infty} 4\pi r^{2} \rho(r) \frac{\sin(4\pi r \sin\theta/\lambda)}{(4\pi r \sin\theta/\lambda)} dr \qquad (1)$$

 Table 1. Scattering factors for the elements C, P, Fe, Cu
 Table 2. Atomic ground-state energies in a.u. for the elements H through Xe

$\sin \theta / \lambda$	C	р	Fa	Cu	T	Z	Element	J	Energy (a.u.)
(A)	C	r	re	Cu	1	1	н	1/2	-5.00006692D+01
0.00	6.00000	15.00000	26.00000	29.00000	53.00000	2	He	0	-2.86175031D+00
0.05	5.75587	14.47133	25.30369	28.44773	51.90948	3	Li	1/2	-7.43327492D+00
0.10	5.12689	13.16987	23.68255	27.08423	49.13990	4	Be	0	-1.45752035D+01
0.15	4.33726	11.65976	21.84282	25.36970	45.69992	5	B	1/2	-2.45351462D+01
0.20	3.58328	10.34214	20.06675	23.54022	42.33883	6	č	0	-3.77023952D+01
0.25	2.96531	9.33664	18.37640	21.68762	39.33329	7	Ň	3/2	-5 44278947D+01
0.30	2.50339	8.59519	16.76515	19.86933	36.67579	8	0	2	-7 48584245D+01
0.35	2.17634	8.02403	15.24966	18.13269	34.27941	ő	F	3/2	-9 94912468D+01
0.40	1.95074	7.54342	13.85589	16.51337	32.07474	10	Ne	0	-1 28675897D+02
0.45	1.79516	7.10235	12.60447	15.03419	30.02990	11	Na	1/2	-1.62055612D+02
0.50	1.68496	6.67471	11.50523	13.70644	28.13993	12	Μσ	0	_1 99794170D+02
0.60	1.53634	5.83114	9.75219	11.50663	24.85037	12	A1	1/2	-2 42290643D+02
0.70	1.42526	5.02101	8.50991	9.86027	22.22688	13	Si	0	-2.89429369D+02
0.80	1.32184	4.28464	7.64307	8.66273	20.19215	15	P	3/2	-341497892D+02
0.90	1.21803	3.64910	7.02171	7.79894	18.59946	16	ŝ	2	_3 98541818D+02
1.00	1.11383	3.12224	6.54444	7.16569	17.29381	17	Č	3/2	-4 60836725D+02
1.20	0.91341	2.36390	5.77457	6.28544	15.09093	18	Ar	0	-5 28558113D+02
1.40	0.73605	1.90269	5.06992	5.61783	13.08185	10	ĸ	1/2	-6 01374488D+02
1.60	0.58787	1.62597	4.38691	5.00455	11.21264	20	Ca	0	-6 79529437D+02
1.80	0.46817	1.45281	3.75185	4.41267	9.57471	20	Sc	3/2	-7 63165864D+02
2.00	0.37321	1.33363	3.19421	3.85485	8.23760	21	Ti	2	
2.50	0.21569	1.12210	2.19625	2.72017	6.14167	22	v	3/2	-9 47980190D+02
3.00	0.12943	0.94229	1.65748	2.00051	5.13213	23	Ċr	3	_1 04947587D+03
3.50	0.08089	0.77713	1.37682	1.59044	4.47827	24	Mn	5/2	-1 15717692D+03
4.00	0.05254	0.63209	1.21333	1.35770	3.89092	25	Fe	4	-1 27110828D+03
5.00	0.02450	0.41083	0.99553	1.10492	2.82746	20		Q/2	-1 39161448D+03
6.00	0.01274	0.26763	0.81249	0.92887	2.06642	27	Ni	A .	_1 51880380D+03
						28	Cu	1/2	-1 65282457D+03
and						29	Zu Zn	0	-1.05202457D+03 -1.70300605D+03
unu						30	20	U	-1.73390003D+03

$$\langle r^2 \rangle = \int_0^\infty 4\pi r^4 \rho(r) \mathrm{d}r,$$
 (2)

where θ is the Bragg angle and λ the wavelength of the incident radiation.

The electronic volume charge density $\rho(r)$ is given by

$$\rho(r) = (4\pi r^2)^{-1} \sum_{a} N_A [P_A^2(r) + Q_A^2(r)], \qquad (3)$$

the radial functions $P_A(r)$ and $Q_A(r)$ being, respectively, the major and minor components of the relativistic wavefunction and N_A the generalized occupation number of the electron shell A. The N_A values were derived from the mixing coefficients of the configurations, determined with the GRASP92 component programs rscf92 and rci92.

Equations (1) and (2) were evaluated numerically as follows: the numerical values $\rho(r)$ from (3), at the tabulation points used in solving the Dirac–Fock equations, were fitted by cubic spine interpolants (Burden & Faires, 1989). Subsequently, the integrals were evaluated by the composite-Simpson formula (Burden & Faires, 1989). The step size was reduced until the scattering factors were invariant to five digits after the decimal point and the second moments to six digits after the decimal point. Scattering factors were evaluated at $\sin \theta/\lambda$ intervals of 0.05 Å⁻¹ in the 0 to 12.0 Å⁻¹ range. Selected values for C, P, Fe, Cu and I are listed in Table 1. Separate scattering factors for the core and valence

15	AI	1/2	-2.422900430102
14	Si	0	-2.89429369D+02
15	Р	3/2	-3.41497892D+02
16	S	2	-3.98541818D+02
17	Cl	3/2	-4.60836725D+02
18	Ar	0	-5.28558113D+02
19	к	1/2	-6.01374488D+02
20	Ca	0	-6.79529437D+02
21	Sc	3/2	-7.63165864D+02
22	Ti	2	-8.52606795D+02
23	v	3/2	-9.47980190D+02
24	Cr	3	-1.04947587D+03
25	Mn	5/2	-1.15717692D+03
26	Fe	4	-1.27110828D+03
27	Co	9/2	-1.39161448D+03
28	Ni	4	-1.51880389D+03
29	Cu	1/2	-1.65282457D+03
30	Zn	0	-1.79390605D+03
31	Ga	1/2	-1.94177656D+03
32	Ge	1/2	-2.09661536D+03
33	As	3/2	-2.25853337D+03
34	Se	2	-2.42753852D+03
35	Br	3/2	-2.60383849D+03
-36	Kr	0	-2.78755091D+03
37	Rb	1/2	-2.97836794D+03
38	Sr	0	-3.17650748D+03
39	Y	3/2	-3.38206019D+03
40	Zr	0	-3.59520069D+03
41	Nb	1/2	-3.81622875D+03
42	Mo	3	-4.04512318D+03
43	Tc	5/2	-4.28191051D+03
44	Ru	5	-4.52678934D+03
45	Rh	9/2	-4.77992710D+03
46	Pd	0	-5.04141710D+03
47	Ag	1/2	-5.31123475D+03
48	Cd	0	-5.58987955D+03
49	In	1/2	-5.87675243D+03
50	Sn	0	-6.17221563D+03
51	Sb	3/2	-6.47636649D+03
52	Te	2	-6.78923971D+03
53	I	3/2	-7.11101605D+03
54	Xe	0	-7.44179817D+03

electrons, needed for charge-density analyses, have also been calculated. The complete data sets for all elements from H and Xe will be available on the Internet.

3. Ground-state energies of H-Xe

The ground-state energies are given in Table 2. They are the sums of the expectation values of the Dirac

SU AND COPPENS

Table 3. Analytical parameters for scattering factors in the $0 \leq \sin \theta / \lambda < 2.0 \text{ Å}^{-1}$ range

Ζ	Atom	a_1 b_1	a_2 b_2	a_3 b_3	a_4 b_4	a_5 b_5	a_6 b_6
1	u	0 42028	0 28527	0 17124	0.00451	0.01725	0.00114
1	п	0.45028	10 20138	51 25444	0.09451	1 25/27	0.00114
2	He	0 69475	0.62068	0 38661	0 15223	0.12661	0.24209
2	110	5 83366	12 87682	2 53296	28 16171	0.12001	0.25308
3	Li	0.84645	0.81146	0.81096	0 26115	0.26055	0.00930
2	21	4.63253	1.71862	97.87364	0.50620	200.00000	0.00010
4	Be	1.59261	1.12768	0.70296	0.53815	0.03863	0.00010
•	20	43.67397	1.86275	0.54243	103.44910	0.00010	0.34975
5	в	2.07418	1.20577	1.07592	0.52023	0.12280	0.00010
-	-	23.39543	1.07672	60.93249	0.27132	0.27192	0.11361
6	С	2.09921	1.80832	1.26159	0.56775	0.26303	0.00010
•	-	13.18997	30.37956	0.69255	0.16381	68.42774	0.44083
7	Ν	2.45424	2.15782	1.05782	0.57557	0.44959	0.30480
		18.66694	8.31271	0.46989	42.44646	0.08747	0.47126
8	0	2.34752	1.83006	1.61538	1.52402	0.41423	0.26867
		9.69710	18.59876	5.19879	0.32408	39.79099	0.01150
9	F	2.96981	2.04536	1.78123	1.52086	0.42253	0.26008
		7.52365	15.41441	3.79721	0.25209	33.76478	0.00488
10	Ne	3.56413	2.72559	1.67359	1.58884	0.25468	0.19320
		7.30559	3.34491	15.93226	0.13859	0.69111	35.26368
11	Na	4.16491	2.38097	1.70484	1.59622	0.66291	0.48971
		4.23096	9.48502	0.12559	1.98358	172.13327	82.23091
12	Mg	3.90882	2.62159	1.69157	1.52610	1.47907	0.77262
	-	3.06041	6.12146	0.10357	58.65022	1.56940	125.49980
13	Al	4.25474	3.58301	2.37351	1.72366	0.99400	0.07031
		3.76670	1.69151	45.27810	0.09238	113.96978	17.47922
14	Si	2.34752	1.83006	1.61538	1.52402	0.41423	0.26867
		9.69710	18.59876	5.19879	0.32408	39.79099	0.01150
15	Р	6.48197	1.89537	4.31666	27.61455	1.73759	0.50991
		1.35793	66.28296	1.10559	0.00010	0.00010	12.05652
16	S	6.90565	5.24410	1.54516	1.42922	0.87564	0.00010
		1.46764	22.31576	56.06328	0.25588	0.00010	26.96892
17	Cl	7.13381	6.26972	1.82658	1.62579	0.14431	0.00010
		1.17455	18.57626	0.07869	48.08203	0.07871	23.23894
18	Ar	7.28551	7.24549	1.74775	1.72174	0.00010	0.00010
		15.63295	0.95562	0.04456	41.07550	0.00617	20.09628
19	K	8.13161	7.43972	1.42159	1.12030	0.88342	0.00010
		12.73675	0.77443	0.00010	200.00000	36.18711	82.98380
20	Ca	8.62965	7.38765	1.63044	1.37681	0.97538	0.00010
		10.45238	0.66036	87.06258	0.00010	181.27760	28.57890
21	Sç	9.18894	7.36727	1.60214	1.33655	0.78386	0.72047
		9.02948	0.57364	137.40503	0.00010	51.53615	53.74395
22	Ti	9.75861	7.35354	1.46842	1.40591	1.28669	0.72609
		7.86172	0.50107	32.75146	90.95131	0.00010	149.02872
23	v	10.25443	7.34699	1.84039	1.72148	1.22611	0.61000
24	0	6.86177	0.43939	23.70259	/9./2053	0.00010	149.36488
24	Cr	10.6/225	4.62093	3.33159	2.72784	1.45281	1.19090
25	M.,	6.12143	0.39293	20.15470	0.39293	92.01317	0.00010
25	MIN	10.98576	/.3301/	2.92091	1.05/0/	1.08018	0.999900
26	Fa	5.27951	0.34199	14.55/91	54.8/900	0.00010	118.20511
20	ге	11.10030	7.37200	3.33141	1.00123	1.20093	0.99032
27	Ca	4.04399	7 28002	12.07033	1 20120	1 26102	0.00010
21	Co	4 12259	7.36902	4.21551	1.00109	07 14070	0.91/10
20	NI:	4.12238	7 20888	10.50050	1 02070	97.14970	0.00010
20	INI	2 60720	1.39000	4.03491	1.960/9	1.14037	0.63323
20	Cu	3.09/29	0.243/4	5.50575	1 0/227	0.020/3	0.00010
27	Cu	2 2/772	0 22522	8 16165	27 05010	0.00475	0.0303/
30	75	12 52020	6 57002	5 84880	21.35010	1 65803	1 21299
50	е ш	3 05828	0.14326	7 52030	28 50706	0 38360	82 22002
31	Ga	10 69865	7 80127	4 74778	3 82120	2 50218	1 22712
51	Ja	3 44787	0 15426	2 07387	8 38441	34 93356	99 34737
32	Ge	9 56335	7 86994	7 64215	3 31296	2 13351	1 47704
		2.2.1494	0.14284	3.86490	32,69417	8,94286	82.15827

Tabl	e	31	(cont.)
1 401		5	(com)	.,

Ζ	Atom	$a_1 \\ b_1$	a_2 b_2	a_3 b_3	a_4 b_4	a_5 b_5	a_6 b_6
33	As	10.86205	7.83248	5.48862	4.21250	2.56904	2.03413
34	Se	12 63843	7 77316	5 80645	4 44206	1 82808	1 50028
54	30	1 07006	0 12167	3 57600	28 84248	1.02090	64 03025
35	Br	12 56835	7 70660	5 76243	4 78003	2 48412	1 60674
55	DI	1 70826	0.11204	2 08848	75 67856	14 05420	55 44320
36	Kr	13 32373	7 64645	5 71351	4 95000	2 80427	1 56038
50	N.	1 67300	0 10346	17 43646	7.55005	12 87008	10 80281
37	Rh	17 73032	7 70415	5 33484	4 02820	1 28671	0.00010
57	KU	1 68208	0.00044	12 80720	4.92029	200 00000	77 16806
38	S-	11 77020	0.07744	7 57120	6 02047	200.00000	1 05652
50	51	1 52266	13 50271	0.08005	1 52251	162 86071	52 07069
30	v	17 89478	9 91124	7 40424	2 14475	164266	0.00010
57	1	1 37770	12 18084	0.08000	127 73235	1.04200	0.00010
40	7 .	18 00877	10 47108	7 22234	2 137.73255	1 86405	0.42187
40	21	1 25042	11 25072	0.07050	40 00408	131 67513	1 76480
41	Nb	18 18722	11.23372	7 02786	3 35224	1 35250	0.00606
-11	110	1 1 3 9 9 3	10.82683	0.06116	38 71734	115 18000	1 19550
42	Mo	18 36000	6 75320	6 25470	5 52072	3 76774	1 33338
12	1110	1 03291	0.05000	10 10135	10 12179	34 16603	104 10407
43	Tc	18 53113	12 72135	6 39681	2 88811	1 72002	0 7/1/18
15	10	0.93112	9 26800	0.03703	31 91681	110 11821	44 07274
44	Ru	18 82022	13 49636	6.01136	3 54102	1 19962	0 93207
••		0.84363	8 84277	0.02355	27 02179	44 09284	113 68484
45	Rh	19 15093	14 43898	4 66972	4 66263	1 22522	0.85125
		0 7 5 9 3 6	8 27523	26 67965	0.00694	97.04210	0.00125
46	Pd	19.32300	15 30162	5 26970	5 12338	0.98021	0.00010
		0.69750	7.93132	0.00010	23 54133	60 82499	1 28291
47	Ag	19.28330	16.71519	5,18450	4,77793	1.03807	0.00010
	8	0.64519	7,48785	0.00010	24 79225	100 31405	2 33951
48	Cd	19.22320	17.67107	5.07851	4.43017	1.59588	0.00010
		0.59542	6.92490	0.00010	24.85505	87.61222	31 90172
49	In	19.16300	18.59170	4.95237	4.27994	2.00969	0.00010
		0.54868	6.39500	0.00010	26,18224	93,70112	8 23922
50	Sn	19.22704	19.09869	4.79841	4.37320	2.50037	0.00010
		5.84698	0.50421	0.00010	27.22571	81.57248	31.56814
51	Sb	19.04077	13.05412	6.63670	4.95963	4.60941	2.69795
		0.46176	5.31900	5.31953	28.54198	0.00010	72.65174
52	Te	19.96327	18.99686	6.19148	4.38583	2.46194	0.00010
		4.81879	0.42169	28.79858	0.00010	70.63864	12.77096
53	I	18.97925	15.69578	7.06433	4.42489	4.10018	2.73271
		0.38267	4.34879	26.93604	4.35210	0.00010	61.59836
54	Xe	20.29787	19.00556	9.04165	3.76022	1.89561	0.00010
		3.93838	0.34588	26.70066	0.00010	65.34476	20.30305

Hamiltonian, the contributions of the Breit magnetic interaction and retardation energies and the vacuum polarization correction. Since the energies in Table 2 include Breit interactions, they cannot be compared directly with the single configuration energies published by Mohanty & Clementi (1990).

4. Parameterization of X-ray scattering factors

It is convenient to use the parameterized scattering factors in structure determination and refinement programs. The popular parameterization by Doyle & Turner (1968),

$$f(\sin\theta/\lambda) = \sum_{i=1}^{4} a_i \exp[-b_i(\sin\theta/\lambda)^2] + c, \qquad (4)$$

has been criticized by Rez, Rez & Grant (1994) because it contains a constant term c, which corresponds to an unphysical density component in the form of a δ function normalized to c. Rez *et al.* eliminated this term and used only four Gaussians as the fitting function, but a perusal of their published parameters (Tables 3–6 of Rez, Rez & Grant, 1994) reveals that, as a result of a zero b_i value, for a number of elements a constant term still occurs (for instance Pd was fitted by three Gaussians and a constant). Furthermore, the fits are not very accurate as evidenced by the large χ^2 values and significant deviations at $\sin \theta/\lambda = 0 \text{ Å}^{-1}$.

As an alternative, we fit the scattering factors with six Gaussian functions:

$$f(\sin\theta/\lambda) = \sum_{i=1}^{6} a_i \exp[-b_i (\sin\theta/\lambda)^2].$$
 (5)

Table 4. Values of $\sum_{i=1}^{6} a_i$, maximum deviation of the fit, $\sin \theta / \lambda$ for the maximum deviation and the mean deviation for the six-Gaussian analytical fit with the parameters in Table 3

Ζ	Atom	$\sum a_i$	χ ²	Maximum deviation	At $\sin \theta / \lambda$ (Å ⁻¹)	Mean deviation
1	н	0.99990	0 62037D-07	0.00014	0.10	0.00002
2	He	1,99996	0 20667D-07	0.00006	0.10	0.00002
3	Li	2 99987	0.51731D-05	0.00109	0.10	0.00026
4	Be	4 00013	0.32305D - 04	0.00209	0.35	0.00069
5	B	4 99901	0.26407D-04	0.00148	0.55	0.00065
6	č	6 00000	0.67265D-05	0.00078	0.95	0.00033
7	Ň	6.99984	0.10825D-05	0.00029	2.00	0.00015
8	0	7,99987	0.20844D-06	0.00018	0.10	0.00006
9	F	8.99987	0.13641D-06	0.00019	0.10	0.00003
10	Ne	10.00003	0.15188D-06	0.00010	0.50	0.00005
11	Na	10.99955	0.48347D-05	0.00097	0.10	0.00027
12	Mg	11.99977	0.63966D-06	0.00045	0.05	0.00007
13	AĬ	12.99923	0.80577D-05	0.00138	0.50	0.00035
14	Si	13.99949	0.18438D-04	0.00153	0.55	0.00057
15	Р	14.99985	0.66919D-04	0.00296	0.60	0.00100
16	S	15.99988	0.19397D-03	0.00479	0.70	0.00180
17	C1	17.00031	0.47698D-03	0.00761	0.75	0.00274
18	Ar	18.00069	0.10445D-02	0.01011	0.85	0.00419
19	K	18.99673	0.12997D-02	0.01085	0.90	0.00476
20	Ca	20.00003	0.22852D-02	0.01525	1.00	0.00601
21	Sc	20.99923	0.23248D-02	0.01427	1.05	0.00620
22	Ti	21.99926	0.18980D-02	0.01339	2.00	0.00557
23	v	22.99940	0.13265D-02	0.01291	2.00	0.00455
24	Cr	23.99632	0.83521D-03	0.00980	2.00	0.00398
25	Mn	24.99915	0.44320D-03	0.00879	2.00	0.00260
26	Fe	25.99875	0.21890D-03	0.00647	2.00	0.00184
27	Co	26.99881	0.95838D-04	0.00435	2.00	0.00121
28	Ni	27.99940	0.38855D-04	0.00254	2.00	0.00083
29	Cu	28.99899	0.28399D-04	0.00168	0.05	0.00071
30	Zn	29.99882	0.26534D-04	0.00166	0.05	0.00069
31	Ga	30.99819	0.39247D-04	0.00281	0.50	0.00008
32	Ge	31.99895	0.15327D-04	0.00151	0.05	0.00048
33	As	32.99882	0.23988D-04	0.00201	0.15	0.00056
34	Se	33.99937	0.39963D-05	0.00092	0.15	0.00023
35	Br	34.99927	0.66159D-05	0.00094	0.15	0.00033
36	Kr	35.99844	0.35946D-04	0.00224	0.30	0.00063
37	Rb	36.99341	0.42115D-03	0.01253	0.05	0.00235
38	Sr	37.99881	0.88262D-04	0.00275	0.35	0.00112
39	Y	38.99777	0.26240D-03	0.00470	0.85	0.00220
40	Zr	39.99898	0.52002D-03	0.00667	2.00	0.00306
41	Nb	40.99938	0.75927D-03	0.00869	2.00	0.00356
42	Мо	41.99874	0.10059D-02	0.01071	2.00	0.00407
43	Tc	42.99890	0.11707D-02	0.01191	2.00	0.00448
44	Ru	44.00064	0.12879D-02	0.01262	2.00	0.00470
45	Rh	44.99873	0.12571D-02	0.01288	2.00	0.00461
46	Pd	45.99802	0.16296D-02	0.01243	1.10	0.00523
47	Ag	46.99909	0.28346D-02	0.01601	1.15	0.00684
48	Cd	47.99892	0.41692D-02	0.01865	1.15	0.00825
49	In	48.99680	0.52571D-02	0.02408	2.00	0.00925
50	Sn	49.99782	0.57351D-02	0.02822	2.00	0.00955
51	Sb	50.99858	0.58843D-02	0.03082	2.00	0.00938
52	Te	51.99947	0.56991D-02	0.03162	2.00	0.00913
53	I	52.99713	0.56033D-02	0.03219	2.00	0.00915
54	Xe	54.00101	0.54040D-02	0.03128	2.00	0.00913

To ensure that none of the b_i 's go to zero, we use the bound constrained non-linear least-squares optimization program *L-BFGS-B* (Zhu, Byrd, Lu & Nocedal, 1994) for the fitting, with a_i and b_i bounds of 0.00010 and 200.000 00. For each element, fits were performed in the $\sin \theta/\lambda$ ranges of 0.0–2.0, 2.0–4.0 and 4.0–6.0 Å⁻¹,

using points with a spacing of 0.05 Å^{-1} . The point $\sin \theta / \lambda = 0$ was added to the last two ranges in order to prevent $\sum_{i=1}^{6} a_i$ from differing substantially from the total number of electrons in the element. As a result, for all fits in the 2–4 and 4–6 Å⁻¹ ranges, $\sum_{i=1}^{6} a_i$ equals f(0) within five digits after the decimal point.

Table 5. Analytical parameters for scattering factors in the $2.0 \leq \sin \theta / \lambda < 4.0 \text{ Å}^{-1}$ range

Ζ	Atom	$a_1 \\ b_1$	$egin{array}{c} a_2 \ b_2 \end{array}$	a_3 b_3	a_4 b_4	a_5 b_5	a_6 b_6
1	Н	0.42530 23.02312	0.28039 10.20138	0.16636 51.25444	0.08953 4.13511	0.03757 1.35175	0.00083 0.23103
2	He	0.68359 4.89722	0.67135 11.93838	0.47591 1.62563	0.12155 27.69307	0.04257 0.49948	0.00503 0.12670
3	Li	0.88868 1.38272	0.87199 4.54264	0.79814 97.52985	0.25226 200.00000	0.16534 0.45756	0.02359 0.11757
4	Be	1.57736 43.77112	1.02906 1.90160	0.59806 0.79719	0.51785 103.50034	0.23469 0.32228	0.04299 0.08820
5	В	2.12478 23.39543	1.12652 60.93249	0.87309 1.10830	0.62712 0.48299	0.22679 0.17433	0.02169 0.03083
6	С	2.13237 13.10945	1.81267 28.50497	0.91756 0.70652	0.63134 0.28312	0.34893 57.25664	0.15713 0.07718
7	N	2.44708 18.66694	2.15066 8.31271	0.83014 0.61670	0.77658 0.25330	0.56841 42.44646	0.22713 0.06960
8	0	2.93656 14.05516	2.53291 5.98365	0.83154 0.21109	0.74837 0.49834	0.67992 34.06486	0.27071 0.05879
9	F	3.49248 10.47716	2.70776 4.36556	0.97709 26.58575	0.85966 0.35906	0.79896	0.16405 0.03166
10	Ne	4.03806 8.15631	2.96652 3.34129	21.25595	0.86778	0.11527	0.24269
12	Ma	4.24472 7.20138 4.18615	2.72438	0.19890	165.16286	0.05364	51.92083
12	A1	5.16800	2.21629	55.52364	0.16026	124.77432	0.04281
14	Si	3.78018 5.64317	1.66194	43.73724	0.12735	111.35596	0.03146
15	Р	1.49609 5.24872	34.62069 4.48644	84.56737 2.46531	0.10894 1.42177	56.34187 1.10302	0.02770 0.27474
16	S	1.91681 5.89928	28.32664 5.40332	1.05214 1.70107	0.08109 1.47967	67.46291 1.31771	0.00751 0.19894
17	Cl	1.46570 7.14857	22.80051 4.46380	0.82159 2.86011	0.06706 1.25833	57.85201 0.81183	0.00010 0.45737
18	Ar	18.18337 7.92591	0.89006 5.25995	45.89666 2.36214	0.03658 1.53919	23.22369 0.62494	0.11549 0.28788
19	К	15.63295 8.23699	0.83571 4.73597	41.07550 2.04905	0.03859 1.76848	20.09628 1.62715	0.24316 0.58237
20	Ca	9.01729	0.65394 5.46146	28.27004 2.02815	1.63518	0.03751 1.38385	82.98356 0.47406
21	Sc	9.44634	0.60776 6.00180	1.88578	0.03417 1.64709	181.45094 1.03493	28.57932 0.98405
22	Ti	10.10530	6.42233	1.66273	1.50904	1.34169	0.95893
23	v	11.27405	6.73892 0.47778	1.74870	1.68174	0.79802	0.75857
24	Cr	10.43232	4.76512	3.16411	2.74320	1.60301	1.29224
25	Mn	12.24240 5.69636	7.09766 0.40612	1.76068 101.12197	1.72482	1.68332	0.49114
26	Fe	12.65956 4.94500	7.16694 0.37376	1.85845 17.18779	1.74352 0.02370	1.31499 43.20144	1.25654 104.18386
27	Co	13.24880 4.57509	7.17858 0.34333	2.56710 15.27805	1.75551 0.02238	1.51306 90.17243	0.73696 40.63471
28	Ni	13.34779 4.09346	7.15137 0.31459	3.24290 12.23973	1.75559 0.02080	1.33643 38.55532	1.16593 95.83599
29	Cu	11.72086 3.34778	7.09358 0.28828	5.93423 8.46165	1.79212 27.95010	1.74571 0.01904	0.71350 98.02165
30	Zn	14.24718 3.35970	7.05271 0.26162	4.33028 10.15307	1.69647 0.01625	1.41414 33.12649	1.25920 79.99036
31	Ga	14.92001 6.79473	7.02666 0.23591	3.89771 9.22370	2.35987 36.60456	1.60865 0.01249	1.18711 98.89710
32	Ge	15.56336 6.10774	7.03637 0.21109	3.16346 8.14629	3.07508 31.23299	1.69141 72.07498	1.47032 0.00731

Ζ	Atom	a_1 b_1	$a_2 \\ b_2$	a_3 b_3	a_4 b_4	a_5 b_5	a_6 b_6
33	As	14.08828	7.09546	4.04940	3.61977	2.87058	1.27650
		11.75137	0.18747	20.56814	4.20554	56.42794	0.00027
34	Se	8.83137	7.46814	7.05070	4.85416	4.53456	1.26108
		3.58242	28.84348	0.17285	15.15766	64.03025	0.00010
35	Br	17.35945	6.99543	4.96870	2.86161	1.57331	1.24150
		8.10872	0.15904	26.85549	12.56219	54.84699	0.00010
36	Kr	17.60004	6.94060	5.78653	2.96797	1.49195	1.21291
		6.56055	0.14599	16.69003	42.37337	19.93619	0.00010
37	Rb	17.65604	9.13615	6.89267	1.21527	1.17631	0.92355
		6.08626	16.42089	0.13390	200.00000	0.00010	44.98589
38	Sr	17.62206	7.37217	6.85650	2.68421	2.32985	1.13520
		6.26610	14.18503	0.12297	127.93172	14.22984	0.00010
39	Y	17.69130	9.86697	6.83236	2.22134	1.28763	1.10040
		2.41440	12.78677	0.11367	137.29778	50.49248	0.00010
40	Zr	32.15426	6.80271	1.04273	0.00010	0.00010	0.00010
		1.75623	0.10418	0.00010	11.94156	51.09940	129.29105
41	Nb	33.24233	6.78151	0.97587	0.00010	0.00010	0.00010
		1.52815	0.09545	0.00010	11.77344	42.92228	133.27890
42	Мо	34.32939	6.77336	0.89695	0.00010	0.00010	0.00010
		1.38491	0.08728	0.00010	10.78110	50.04189	81.05093
43	Tc	19.26166	16.15002	6.77863	0.80949	0.00010	0.00010
		1.27785	1.27770	0.07978	0.00010	10.85734	80.39102
44	Ru	36.46918	6.78339	0.74714	0.00010	0.00010	0.00010
••	114	1,19294	0.07386	0.00010	9.60627	42.29401	64.57157
45	Rh	21 57643	10 71823	6 80000	4 78230	0.65832	0.46472
15	i di	1 07940	1 08194	0.06783	8 96262	0.00010	36.53622
46	Pd	27 27332	6 84304	5 59717	5.06602	0 69379	0 52666
40	14	0.96326	0.06162	9 10948	9 12418	37 47312	0.00010
47	Δa	24 89885	13 88998	6 92293	0 54798	0 38987	0 35039
- 77	лg	0 87363	8 40420	0.05539	102 02171	34 93690	0.00010
18	Cd	23 52794	12 28950	6 29213	2 80914	2 19516	0.88614
70	Cu	0 70065	7 82362	0.04527	7 82457	49 12746	0.00014
10	In	23 20033	16 81728	7 10081	1 57803	0 19952	0.00412
42		074584	6 78516	. 0.04524	31 57445	8 21000	92 83768
50	S -	22 20745	18 01043	7.07108	0 87824	0.65178	0.00101
50	511	0 70001	6 26640	0.0/108	24 29721	85 70001	22 82204
51	Ch.	0.70091	0.20040	7.02506	5 17770	3.00210	0.05144
51	30	25.15100	5 70202	7.02390	5 75107	24 10015	60 27842
50	Τ-	0.05722	3.70303	0.04042	3./319/	0.02690	09.2/043
52	le	22.85445	17.90903	0.9/3//	4.14037	0.02089	12 76026
5 0	•	0.61519	5.25956	0.03812	36.28090	05.30304	12,70923
55	I	22.53413	12.53981	0.91424	0.91423	4.090/2	0.00080
~ .	37	0.5/543	4.84566	38.06353	0.03588	4.84301	14.221/5
54	Xe	22.18869	17.90011	7.06493	0.84607	0.00010	0.00010
		0.53788	4.40596	32.27948	0.03368	64.94894	20.30429

The parameters are listed in Tables 3, 5 and 7, while the χ^2 and $\sum_{i=1}^{6} a_i$ values and maximum and mean deviations of the fitting for each of the elements are given in Tables 4, 6, 8 and 9. The quality of the fitting is illustrated by the χ^2 values relative to those obtained with the earlier expressions. For the 0–2 Å⁻¹ range, the average ratio of the four-term χ^2 to the present six-term χ^2 is 1312. For the 0–6 Å⁻¹ range, the average χ^2 ratio is 7580. The only elements for which improvements are small are B, S, Cl and Ar in the sin θ/λ range of 0.0 to 2.0 Å⁻¹. The relative deviation at the point of maximum deviation (see Table 9) is very small for all the elements, ranging from 0.002% for F to 0.372% for Sr, the latter at sin $\theta/\lambda = 3.95$ Å⁻¹. The fit obtained for iodine is illustrated in Fig. 1. We note that for some elements the χ^2 in Table 9 is smaller than the sum of χ^2 's in Tables 4, 6 and 8. The reason is that the points at 2.0 and 4.0 Å⁻¹ contribute to two of the three individual χ^2 's. By the same token, because Table 9 is based on using parameters in Tables 3, 5 and 7 in the ranges $0 \le \sin \theta / \lambda < 2.0$ Å⁻¹, 2.0 $\le \sin \theta / \lambda < 4.0$ Å⁻¹ and $4.0 \le \sin \theta / \lambda \le 6.0$ Å⁻¹, respectively, the maximum deviation in Table 9 is smaller than the largest of the maximum deviations in Tables 4, 6 and 8 for some elements. For comparison, the nonrelativistic scattering factors were also obtained with the program *GRASP*92 by using an artificially large value for the speed of light. The differences between the relativistic and non-relativistic values in the sin θ / λ range 0–12 Å⁻¹ for the halogen atoms Cl, Br and I are shown in Fig. 2.

Table 6. Values of $\sum_{i=1}^{6} a_i$, maximum deviation of the fit, $\sin \theta / \lambda$ for the maximum deviation and the mean deviation for the six-Gaussian analytical fit with the parameters in Table 5

7	Atom	$\sum_{i=1}^{n}$.2	Maximum	At $\sin \theta / \lambda$	Maan Andreise
2	Atom	$\sum u_i$	X	deviation	(A)	wean deviation
1	H	1.00000	0.19776D-08	0.00001	2.20	0.00001
2	He	2.00000	0.12631D-08	0.00001	4.00	0.00000
3	Li	3.00000	0.10281D-07	0.00003	4.00	0.00001
4	Be	4.00000	0.37507D-09	0.00001	3.65	0.00000
5	В	5.00000	0.92120D-09	0.00001	2.00	0.00000
6	C	6.00000	0.27818D-08	0.00002	4.00	0.00001
7	N	7.00000	0.18745D08	0.00002	4.00	0.00001
8	0	8.00000	0.26617D-09	0.00001	2.65	0.00000
9	F	9.00000	0.19176D-08	0.00002	2.00	0.00001
10	Ne	10.00000	0.19151D-07	0.00006	2.00	0.00002
11	Na	11.00000	0.27237D-07	0.00007	2.00	0.00002
12	Mg	12.00000	0.42897D-07	0.00006	2.00	0.00003
13	AI	13.00000	0.36751D-07	0.00007	4.00	0.00003
14	Si	14.00000	0.88373D-07	0.00014	2.00	0.00003
15	Р	15.00000	0.63188D-08	0.00003	4.00	0.00001
16	S	16.00000	0.75939D-07	0.00010	2.00	0.00004
17	Cl	17.00000	0.79467D-07	0.00010	2.00	0.00004
18	Ar	18.00000	0.13768D-06	0.00013	4.00	0.00005
19	K	19.00000	0.30834D-04	0.00200	2.00	0.00073
20	Ca	20.00000	0.36782D-04	0.00228	2.00	0.00080
21	Sc	21.00000	0.46348D-04	0.00259	2.00	0.00090
22	Ti	22.00000	0.55136D-04	0.00279	2.00	0.00099
23	v	23.00000	0.58697D-04	0.00280	2.00	0.00102
24	Cr	24.00000	0.12040D-06	0.00016	2.00	0.00004
25	Mn	25.00000	0.41557D-04	0.00226	4.00	0.00086
26	Fe	26.00000	0.24690D-04	0.00190	4.00	0.00066
27	Co	27.00000	0.10140D-04	0.00135	4.00	0.00042
28	Ni	28.00000	0.51221D-05	0.00094	2.00	0.00029
29	Cu	29.00000	0.12447D-04	0.00197	2.00	0.00040
30	Zn	30.00000	0.40362D-04	0.00329	2.00	0.00078
31	Ga	31.00000	0.87632D04	0.00451	2.00	0.00118
32	Ge	32.00000	0.14904D-03	0.00553	2.00	0.00157
33	As	33.00000	0.21179D-03	0.00617	2.00	0.00190
34	Se	34.00000	0.39504D-03	0.00959	2.00	0.00243
35	Br	35.00000	0.73994D-03	0.01159	2.00	0.00352
36	Kr	36.00000	0.10667D-02	0.01162	2.00	0.00435
37	Rb	37.00000	0.11998D-02	0.00937	4.00	0.00471
38	Sr	38.00000	0.10796D-02	0.01025	4.00	0.00447
39	Y	39.00000	0.87919D-03	0.00933	4.00	0.00402
40	Zr	40.00000	0.80302D-03	0.00928	4.00	0.00382
41	Nb	41.00000	0.66912D-03	0.00899	4.00	0.00349
42	Mo	42.00000	0.50718D-03	0.00838	4.00	0.00302
43	Tc	43.00000	0.33980D-03	0.00738	4.00	0.00244
44	Ru	44.00000	0.19194D-03	0.00569	4.00	0.00182
45	Rh	45.00000	0.13707D-03	0.00447	4.00	0.00157
46	Pd	46.00000	0.10172D-03	0.00390	4.00	0.00135
47	Ag	47.00000	0.78258D-04	0.00344	4.00	0.00118
48	Cd	48.00000	0.63844D-04	0.00329	4.00	0.00105
49	In	49.00000	0.60428D-04	0.00276	2.00	0.00104
50	Sn	50.00000	0.11067D-03	0.00396	2.00	0.00140
51	Sb	51.00000	0.19079D-03	0.00511	2.00	0.00185
52	Te	52.00000	0.28794D-03	0.00629	2.00	0.00227
53	I	53.00000	0.40506D-03	0.00760	2.00	0.00268
54	Xe	54.00000	0.55236D-03	0.00913	2.00	0.00312

5. The atomic second moments $\langle r^2 \rangle$ and the electron scattering factors $f_{\rm el}(0)$

The atomic second moments $\langle r^2 \rangle$ and the electron scattering factors $f_{\rm el}(0)$ are listed in Table 10. $\langle r^2 \rangle$ is related to the mean inner potential (Becker & Coppens, 1990; O'Keeffe & Spence, 1994). The contribution to the

mean inner potential from the IAM (independent-atom model) for a crystal is

$$(2\pi/3V)\sum_{j}\langle r^{2}\rangle_{j},$$
 (6)

where V is the unit-cell volume and the summation is

Table 7. Analytical parameters for scattering factors in the $4.0 \leq \sin \theta / \lambda < 6.0 \text{ Å}^{-1}$ range

Ζ	Atom	$a_1 \\ b_1$	a_2 b_2	a_3 b_3	a_4 b_4	a_5 b_5	a_6 b_6
1	Н	0.43051	0.28560	0.17157	0.09474 4.13511	0.01748 1.35427	0.00010 0.07925
2	He	0.73151	0.71927	0.31319	0.16947 27.69307	0.06400 0.58432	0.00256 0.08598
3	Li	0.93538	0.86153 97.52985	0.84472 1.63985	0.31565 200.00000	0.03826 0.19390	0.00446 0.04957
4	Be	1.60945 43.77112	1.05263	0.66608 0.69884	0.54994	0.10771 0.18806	0.01417 0.04866
5	В	2.20211 23.39543	1.33369 1.07687	1.20385 60.93249	0.22689 0.18397	0.03303 0.04745	0.00043 0.21648
6	С	2.14806 13.10945	1.82836 28.50497	1.33723 0.42547	0.36462 57.25664	0.27457 0.14733	0.04718 0.03953
7	N	2.47201 8.64871	2.43548 19.61227	1.11094 0.36713	0.52080 43.58268	0.38633 0.13620	0.07444 0.03681
8	0	3.00590 14.05516	2.60225 5.98365	1.03232 0.32724	0.74926 34.06486	0.50166 0.12653	0.10861 0.03445
9	F	3.52591 10.47716	2.74119 4.36556	1.01052 26.58575	0.96212 0.29553	0.61180 0.11775	0.14848 0.03227
10	Ne	4.03969 8.15631	2.96823 3.34037	1.19927 21.25595	0.81126 0.28588	0.76534 0.11771	0.21621 0.03229
11	Na	4.32848 7.20138	3.80095 2.72535	1.08229 0.13543	0.90417 165.16286	0.53097 51.92083	0.35315 0.03532
12	Mg	4.23374 5.16800	3.77114 2.13995	1.54677 55.52364	1.13333 0.12623	0.89013 124.77432	0.42487 0.03312
13	Al	4.29478 3.78023	3.59215 1.69494	2.38016 43.73724	1.15060 0.11646	1.09159 111.35596	0.49073 0.03079
14	Si	4.66828 2.74920	3.46099 35.52517	3.08480 1.32385	1.14364 0.10644	1.09398 80.40524	0.54830 0.02844
15	Р	5.27722 2.03674	4.51857 28.32664	2.35454 1.01667	1.13515 67.46291	1.12441 0.09591	0.59010 0.02593
16	S	5.94845 1.55852	5.41744 22.80051	1.58567 0.75525	1.33183 57.85201	1.10802 0.08492	0.60860 0.02319
17	C1	7.15746 1.16607	6.17588 18.18337	1.88742 45.89666	1.11001 0.07381	0.59643	0.07281 23.22369
18	Ar	7.29820 15.63295	7.25818 0.95548	1.73443 41.07550	1.13745 0.06333	0.55402 0.01682	0.01773 20.09628
19	K	9.39735 12.21015	3.20941 28.27004	2.92884 200.00000	1.78760 82.98356	1.18962 0.05400	0.48718 0.01335
20	Ca	10.39184 10.44441	3.40270 86.31958	2.75840 181.45094	1.77909 28.57932	1.20798 0.04749	0.45999 0.01133
21	Sc	10.94006 9.08162	3.37950 137.40234	2.52865 51.54073	2.47777 53.74777	1.01943 0.04750	0.65458 0.01424
22	Ti	11.69987 8.05962	3.10361 92.71004	2.93626 31.20186	2.55350 144.27503	1.16297 0.01964	0.54378 0.06434
23	v	12.92694 7.25373	3.40159 120.58589	2.45091 54.89369	2.41146 22.00492	1.43062 0.02112	0.37848 0.10869
24	Cr	12.83718 6.21670	5.14806 26.27260	3.69710 63.74598	1.50701 0.02045	0.59008 0.16482	0.22058 68.88348
25.	Mn	13.76643 5.69636	3.28471 101.12197	3.20735 19.85275	2.01517 37.71895	1.53658 0.01925	1.18977 0.21023
26	Fe	13.98131 4.94500	3.18020 17.18779	2.63674 43.20144	2.57829 104.18386	2.07208 0.23306	1.55137 0.01800
27	Co	14.34964 4.57509	3.66794 15.27805	2.96999 0.23907	2.61390 90.17243	1.83780 40.63471	0.01680
28	Ni	14.25237 4.09347	4.14748 12.23973	3.72080 0.23557	2.24101 38.55532	2.07051 95.83599	1.56782 0.01569
29	Cu	12.46573 3.34773	6.67910 8.46165	4.28522 0.22725	2.53699 27.95010	1.57460 0.01470	1.45837 98.02165
30	Zn	14.83864 3.35978	4.92174 10.15307	4.80275 0.21816	2.00560 33.12649	1.85066 79.99036	1.58060 0.01379
31	Ga	15.42207 3.05376	5.23057 0.20821	4.33627 9.22370	2.79843 36.60456	1.62567 98.89710	1.58699 0.01298
32	Ge	15.93149 2.77405	5.60315 0.19829	3.47718 8.14629	3.38880 31.23299	2.00513 72.07498	1.59426 0.01227

Table 7 (cont.)

Ζ	Atom	a_1	a_2	a_3	a_4	a5 b5	a_6
22	4.5	14 42406	5 02000	4 21720	24	2 0 2 9 2 9	1 (02(2
55	As	2 42807	0.18865	4.21/20	3./8//3	56 42704	1.00202
34	Se	17 17400	6 21788	5 03680	4.20316	1 61251	1 52617
54	50	2 32214	0.21788	28 03463	10 08637	0.01100	61 65071
35	Br	17 46143	6 46430	4 08//1	2 87732	1 62254	1 58002
55	Di	2 11212	0.17054	26 85549	12 56210	0.01060	54 84600
36	Kr	17 61110	6 67129	5 73175	2 91319	1 63549	1 43717
	16	1 91784	0.16201	16 69003	42 37337	0.01018	10 03610
37	Rb	17 59789	9.01628	6 83910	1 64764	1 09540	0 80368
		1,73467	16 42089	0 1 5 3 8 3	0.00978	200.00000	44 98589
38	Sr	17 51450	7 19723	6 965341	2 50927	2 1 5 4 9 1	1 65877
	01	1.56850	14 18503	0 14588	127 93172	14 22984	0.00941
39	Y	17.50681	9.66836	7 04463	2 02273	1 66846	1 08902
		1.43461	12.78677	0.13816	137.29778	0.00904	50 49248
40	Zr	17.52682	10.24298	7.08400	1.77248	1 69936	1 67436
		1.31592	11.94156	0.13059	51.09940	129.29104	0.00864
41	Nb	17.61902	11.17550	7.08432	2.22654	1.67512	1 21952
		1.21391	11.77344	0.12319	42.92228	0.00820	133,27890
42	Mo	17.61629	11.69921	7.06320	3,67548	1.66629	0.27952
		1.11745	10.78110	0.11586	50.04189	0.00767	81.05093
43	Tc	14.13464	10.23625	7.12979	7.02850	2.82720	1.64360
		10.85734	1.02759	1.02766	0.10855	80.39102	0.00699
44	Ru	17.57992	13.46961	6.97474	4.36924	1.60607	0.00042
		0.95049	9.60627	0.10136	42.29401	0.00617	64.57157
45	Rh	14.11606	14.10591	6.92593	5.03053	3.27670	1.54486
		8.96262	0.87857	0.09416	36.53622	0.88015	0.00508
46	Pd	17.69188	8.46690	7.93575	6.88468	3.56352	1.45726
		0.81028	9.10948	9.12418	0.08705	37.47312	0.00369
47	Ag	17.65492	17.56029	6.87287	3.07323	1.33347	0.50523
	U	1.32570	8.40420	0.07993	34.93690	0.00183	102 02171
48	Cd	17.64118	13.94652	6.87610	4.46616	3.85218	1 21785
		1.50685	7.82362	0.07369	7.82457	49.12746	0.00010
49	In	23.05221	7.81386	6.83574	5.94952	4 13700	1 21167
		6.78516	31.57445	0.06968	92.83768	8.21999	0.00010
50	Sn	23.60743	6.78062	6.47524	6.24878	5.68801	1,19990
		6.26640	0.06568	34.38731	85.79001	33.82304	0.00010
51	Sb	17.19136	10.73750	8.65681	6.71660	6.51615	1.18157
		5.70303	5.75197	34.19915	0.06170	69.27843	0.00010
52	Te	24.06321	10.24194	6.64773	5.77451	4.11703	1.15558
		5.25957	36.28090	0.05776	65.30504	12.76925	0.00010
53	I	18.41511	12.78954	9.97202	6.58022	4.12222	1.12090
		4.84569	38.06353	4.84562	0.05390	14.22179	0.00010
54	Xe	22.47924	11.64406	9.06711	6.51865	3.21450	1.07642
		4.40617	32.27948	20.30429	0.05013	64.94894	0.00010

over all atoms in the unit cell. From the $\langle r^2 \rangle$ value for Si in Table 10, the IAM contribution to the mean inner potential for the silicon crystal at room temperature $(a_{cell} = 5.4310 \text{ Å})$ is calculated as 13.57 V, which is very close to the calculated value of 13.61 V from the nonrelativistic atomic wavefunction (O'Keeffe & Spence, 1994), but differs significantly from the observed value of 9.30 (12) V (O'Keeffe & Spence, 1994).

For neutral atoms, the electron scattering factors $f_{\rm el}(0)$ are related to the atomic second moments $\langle r^2 \rangle$. Integration of the electrostatic potential due to the electrons over the atomic volume gives (Ibers, 1958)

$$f_{\rm el}(0) = 0.529 \, 177 \, 249 \langle r^2 \rangle / 3, \tag{7}$$

where $\langle r^2 \rangle$ is in a.u. and $f_{el}(0)$ is in Å. The values in Table 10 have been obtained with this equation.

6. Discussion

For elements He–Ar, our *f* values agree better with the results of Wang, Smith, Bunge & Jáuregui (1996) than those given by Rez, Rez & Grant (1994). We will not consider the results for the element Cu for which apparently an incorrect initial configuration was used in the earlier work.† Excluding Cu, the largest differences between the present scattering factors and those of Rez *et al.* are less than 0.5% but absolute discrepancies of about 0.07 electrons occur for transition metals. As an example, for Cr and Mo, respectively, the present values for *f* at $\sin \theta/\lambda = 0.15 \text{ Å}^{-1}$ are 20.0796 and 35.9458, as compared to Rez *et al.*'s results of 20.0093 and 35.8788.

[†] Private communication.

Table 8. Values of $\sum_{i=1}^{6} a_i$, maximum deviation of the fit, $\sin \theta / \lambda$ for the maximum deviation and the mean deviation for the six-Gaussian analytical fit with the parameters in Table 7

				Maximum	At $\sin \theta / \lambda$	
Ζ	Atom	$\sum a_i$	χ^2	deviation	(Å ⁻¹)	Mean deviation
1	Н	1.00000	0.34593D-09	0.00001	4.85	0.00000
2	He	2.00000	0.84839D-08	0.00004	4.00	0.00001
3	Li	3.00000	0.41850D-09	0.00001	6.00	0.00000
4	Be	4.00000	0.10261D-08	0.00001	5.95	0.00000
5	В	5.00000	0.46310D-08	0.00002	4.00	0.00001
6	С	6.00000	0.51150D-09	0.00001	5.15	0.00000
7	N	7.00000	0.70662D-09	0.00001	5.75	0.00000
8	0	8.00000	0.73482D-09	0.00001	4.00	0.00000
9	F	9.00000	0.61241D-09	0.00001	4.00	0.00000
10	Ne	10.00000	0.25978D-08	0.00002	6.00	0.00001
11	Na	11.00000	0.78168D-07	0.00010	4.00	0.00004
12	Mg	12.00000	0.73211D-07	0.00010	6.00	0.00004
13	Al	13.00000	0.56319D-07	0.00009	4.00	0.00003
14	Si	14.00000	0.30755D-07	0.00007	6.00	0.00002
15	Р	15.00000	0.11341D-07	0.00004	6.00	0.00001
16	S	16.00000	0.12189D-08	0.00001	6.00	0.00000
17	Cl	17.00000	0.23845D-08	0.00002	4.00	0.00001
18	Ar	18.00000	0.74005D-08	0.00004	4.00	0.00001
19	K	19.00000	0.40968D-08	0.00002	6.00	0.00001
20	Ca	20.00000	0.63051D-08	0.00004	4.00	0.00001
21	Sc	21.00000	0.88740D-07	0.00016	4.00	0.00004
22	Ti	22.00000	0.41291D-06	0.00031	4.00	0.00008
23	v	23.00000	0.99249D-06	0.00043	4.00	0.00013
24	Cr	24.00000	0.13776D-05	0.00045	4.00	0.00015
25	Mn	25.00000	0.13149D-05	0.00043	6.00	0.00015
26	Fe	26.00000	0.10129D-05	0.00039	6.00	0.00013
27	Co	27.00000	0.74640D-06	0.00034	6.00	0.00011
28	Ni	28.00000	0.60109D-06	0.00029	6.00	0.00010
29	Cu	29.00000	0.53578D-06	0.00027	6.00	0.00010
30	Zn	30.00000	0.52892D-06	0.00026	4.00	0.00010
31	Ga	31.00000	0.56383D-06	0.00028	4.00	0.00010
32	Ge	32.00000	0.64716D-06	0.00030	4.00	0.00011
33	As	33.00000	0.71688D-06	0.00032	4.00	0.00011
34	Se	34.00000	0.79289D-06	0.00034	4.00	0.00012
35	Br	35.00000	0.81266D-06	0.00033	4.00	0.00012
36	Kr	36.00000	0.77800D-06	0.00032	4.00	0.00012
37	Kb	37.00000	0.6/3/6D - 06	0.00030	6.00	0.00011
38	5	38.00000	0.51206D-06	0.00027	6.00	0.00009
39	Y 7-	39.00000	0.30/08D - 06	0.00022	6.00	0.00007
40		40.00000	0.12433D - 00	0.00016	6.00	0.00003
41	ND Mo	41.00000	0.41329D - 07	0.00008	0.00	0.00003
42	IVIO T-	42.00000	0.13039D - 00	0.00020	4.00	0.00004
43	IC Du	43.00000	0.54100D - 00	0.00037	4.00	0.00009
44	Ku DL	44.00000	0.12991D - 0.05	0.00034	4.00	0.00013
45	KII DJ	45.00000	0.23304D - 03	0.00072	4.00	0.00020
40	Pu	40.00000	0.42330D - 03	0.00092	4.00	0.00027
4/	Ag	47.00000	0.03000D - 03	0.00111	4.00	0.00033
40	La In	48.00000	0.10110D - 04	0.00139	4.00	0.00040
77 50	ш Sp	50 00000	0.27370D-04	0.00271	4.00	0.00004
51	Sh	51.00000	0.02377D - 04 0.11150D - 03	0.00377	4.00	0.00136
52	30 Te	52 00000	0.11135D = 03 0.16036D = 03	0.00474	4.00	0.00150
52	IC	53 00000	0.10750D = 03 0.22864D = 02	0.00550	4 00	0.00198
55	Xe	54 00000	0.22004D = 03 0.28037D = 03	0.00653	4 00	0.00120
54	10	24.00000	0.2000/10 00	0.000000		0.00220

The largest relative difference in $f_{el}(0)$ is 5.5% in the case of Cr, our value being 6.589 697 Å and that of Rez *et al.* 6.9550 Å. The only other atoms for which the relative difference in $f_{el}(0)$ exceeds 3.0% are N (3.43%), Nb (4.35%), Mo (5.04%) and Sb (3.02%).

The fitting parameters given in Tables 3, 5 and 7 for the whole range $0.0 \le \sin \theta / \lambda \le 6.0 \text{ Å}^{-1}$ eliminate the

need for different functional forms for different ranges of $\sin \theta / \lambda$, as used by Fox, O'Keeffe & Tabbernor (1989). The present parameterization has a minor discontinuity at $\sin \theta / \lambda$ values of 2.0 and 4.0 Å⁻¹. We recommend that parameters in Tables 5 and 7, respectively, be used to evaluate $f(\sin \theta / \lambda)$ and its derivatives at the boundary points with $\sin \theta / \lambda = 2.0$ and 4.0 Å⁻¹.

Table 9. Summary of maximum deviation, $\sin \theta / \lambda$ for the maximum deviation and the mean deviation for $0.0 < \sin \theta / \lambda < 6.0 \text{ Å}^{-1}$

Ζ	Atom	χ²	Maximum deviation	At $\sin \theta / \lambda$ (Å ⁻¹)	Mean deviation
1	н	0.64067D-07	0.00013	0.10	0.00001
2	He	0.30578D-07	0.00005	0.00	0.00001
3	Li	0.51638D-05	0.00109	0.35	0.00009
4	Be	0.32094D-04	0.00224	0.55	0.00023
5	В	0.26396D-04	0.00161	0.50	0.00023
6	С	0.62572D-05	0.00078	0.95	0.00011
7	N	0.10031D-05	0.00025	1.15	0.00005
8	0	0.19883D-06	0.00019	0.10	0.00002
9	F	0.14143D-06	0.00019	0.10	0.00002
10	Ne	0.16819D-06	0.00010	0.65	0.00003
11	Na	0.47128D-05	0.00096	0.10	0.00011
12	Mg	0.75839D-06	0.00045	0.05	0.00005
13	Al	0.78712D-05	0.00137	0.05	0.00014
14	Si	0.18283D-04	0.00153	0.55	0.00021
15	Р	0.66260D-04	0.00297	0.60	0.00035
16	S	0.18860D-03	0.00479	0.70	0.00061
17	Cl	0.47507D-03	0.00760	0.75	0.00095
18	Ar	0.99372D-03	0.01010	0.85	0.00138
19	K	0.12595D-02	0.01084	0.90	0.00179
20	Ca	0.22798D-02	0.01524	1.00	0.00226
21	Sc	0.22318D-02	0.01427	1.05	0.00232
22	Ti	0.17697D-02	0.01231	1.15	0.00213
23	V	0.12143D-02	0.01004	1.20	0.00182
24	Cr	0.74086D-03	0.00700	1.25	0.00134
25	Mn	0.40450D-03	0.00579	1.75	0.00115
26	Fe	0.19888D-03	0.00420	1.75	0.00083
27	Со	0.85917D-04	0.00284	1.80	0.00055
28	Ni	0.37902D-04	0.00171	1.80	0.00040
29	Cu	0.40976D-04	0.00195	2.00	0.00042
30	Zn	0.66255D-04	0.00330	2.00	0.00053
31	Ga	0.12106D-03	0.00445	2.00	0.00069
32	Ge	0.15522D-03	0.00557	2.00	0.00072
33	As	0.22132D-03	0.00623	2.00	0.00085
34	Se	0.40025D-03	0.00962	2.00	0.00097
35	Br	0.73157D-03	0.01157	2.00	0.00135
36	Kr	0.10534D-02	0.01168	2.00	0.00171
3/	Rb	0.15180D-02	0.01253	0.05	0.00237
38	Sr	0.10636D - 02	0.00800	3.95	0.00189
39	Y Z-	0.10413D-02	0.00699	3.95	0.00209
40	Zr	0.11920D-02	0.00675	2.00	0.00224
41	IND Ma	0.12698D - 02	0.00759	0.95	0.00229
42	IVIO To	0.13201D-02	0.00864	0.95	0.00229
45	IC Du	0.1314/D - 02	0.00905	1.00	0.00224
44	RU Dh	0.12905D - 02	0.00928	1.00	0.00213
45	RII D-l	0.12133D - 02	0.00925	1.05	0.00204
40	Fu A a	0.17079D-02	0.01242	1.10	0.00227
47	Ag Cd	0.20322D - 02	0.01000	1.15	0.00274
40 40	UU In	0.371140-02	0.018/0	1.15	0.00312
50	Sn Sn	0.470330-02	0.02003	1.20	0.00331
51	Sh	0.52337D_02	0.02014	1.25	0.00383
52	Te	0.52557D - 02 0.51414D - 02	0.02087	1.70	0.00402
53	T	0.51719D - 02	0.02001	1.70	0.00410
54	Xe	0.51720D-02 0.52047D-02	0.02031	1.75	0.00441
v 1	710	0.2204/D-02	0.02001	1.75	0.00402

Parameters in Tables 3, 5, and 7 are used for $\sin \theta / \lambda$ ranges of [0.0, 2.0 Å⁻¹], [2.0, 4.0 Å⁻¹] and [4.0, 6.0 Å⁻¹], respectively.

The accurate analytical expressions for X-ray scattering factors are also useful for electron diffraction studies, for the atomic scattering factors for the diffraction of electrons are related to the X-ray scattering factors by the Mott formula

$$f_{\rm el}(s) = 0.023\,934\,\lambda^2 [Z - f_X(s)] / \sin^2\theta, \qquad (8)$$

where λ is the wavelength of the incident electrons in Å, Z the atomic number, $f_{el}(s)$ the electron scattering factor in Å and $f_X(s)$ the X-ray scattering factors in electron

units. It should be interesting to compare the $f_{el}(s)$ calculated from (8) and (5) to the results obtained directly from the Fourier–Bessel transformation of the atomic potential, especially at low angles where the Mott formula may be numerically inaccurate (Peng & Cowley, 1988).

Fig. 1. The relativistic scattering factor for iodine, and the difference between f_{rel} and the fit, multiplied by a factor of 200.

Table 10. Summary of $\langle r^2 \rangle$ and $f_{el}(0)$ for the elements H-Xe

Ζ	Atom	$\langle r^2 \rangle$ (a.u.)	$f_{el}(0)$ (Å)
1	н	2.999906	0.529161
2	He	2.369438	0.417951
3	Li	18.628952	3.286006
4	Be	17 312983	3 053879
5	B	15 844575	2 794863
6	Č	13 785530	2.754605
7	N	12.076700	2.451007
°	n n	11 164122	1 060267
0	F	10.776818	1 802022
10	I No	0 264624	1.603933
11	No	27 005807	1.051845
12	Ma	27.093697	5 200122
12	AI	23.331436	5 000025
13	AI C:	33.390323	5.009033
14	ו ס	32.10/1/3	5 22 1 202
15	r	30.223340	5 122664
10	3 C1	29.103037	3.133004
1/		27.309091	4.602979
18	Ar	25.973470	4.581523
19	<u>к</u> Са	56 202256	0.0120202
20	Ca	52 701 422	9.913626
21	30 Ti	JZ. 791432 10 755931	9.312008
22	N N	49.755651	8.770551
23	v C=	47.091939	6.300004
24	Mn	42 506202	0.369097
25	Fe	42.330233	7 168003
20		38 870200	6 856424
27	Ni	37 248708	6 570300
20		31 752800	5 600953
30	Zn	34 386584	6.065533
31	Ga	40 300987	7 108789
32	Ge	41 025939	7 236665
33	As	40 638097	7 168252
34	Se	40 698616	7 178927
35	Br	40.058859	7.066079
36	Kr	39 104753	6 897782
37	Rb	66 797111	11.782504
38	Sr	74.321817	13,109805
39	Ŷ	71.818836	12.668298
40	Źr	69.051635	12.180185
41	Nb	58.126992	10.253161
42	Mo	55,430030	9.777437
43	Tc	61.389271	10.828602
44	Ru	52.886093	9.328706
45	Rh	51.590182	9.100117
46	Pd	42.981606	7.581629
47	Ag	49.157026	8.670927
48	Cď	52.351815	9.234463
49	In	59.156095	10.434687
50	Sn	60.907674	10.743652
51	Sb	61.505416	10.849089
52	Te	62.073578	10.949308
53	Ι	61.874783	10.914242
54	Xe	61.198713	10.794989

7. Concluding remarks

For the elements between H and Xe, we have obtained relativistic ground-state energies, atomic second moments $\langle r^2 \rangle$, electron scattering factors $f_{el}(0)$, total X-ray scattering factors in the range $0.0 \le \sin \theta / \lambda \le 12.0 \text{ Å}^{-1}$ and analytical expressions for the X-ray scattering factors

Fig. 2. The difference between the relativistic and non-relativistic form factors for I, Br and Cl, multiplied by a factor of 200.

in the range $0.0 \leq \sin \theta / \lambda \leq 6.0 \text{ Å}^{-1}$. Scattering factors in this extended range are required for diffraction studies with increasingly available high-energy synchrotron radiation. The wavefunctions from which the scattering factors are derived take into account part of the configuration interaction (CI) in the case of some open shell atoms but are not fully correlated. Meyer, Müller & Schweig (1995) have suggested that the relativistic correction and the correction due to electron correlation should be combined. However, this procedure assumes additivity of the two effects, which may not be valid.

The new analytical expressions give a much better fit than those employed previously and are suitable for accurate studies. The total scattering factors, the parameters for the fit to the total scattering factors, as well as separate core and valence scattering factors, are available in electronic form from the authors. Results on the elements Cs to Cf will be the subject of a future publication. Fitted linear combinations of Slater-type functions, describing the atomic orbitals of the relativistic atoms, are being calculated.

We would like to thank Dr F. A. Parpia of IBM Corporation and Dr I. P. Grant of Oxford University for their help with the use of *GRASP*92 and for many useful discussions. We are also indebted to Dr Parpia for making the *GRASP*92 package available. Support of this work by the National Science Foundation (CHE9317770 and CHE9615586) is gratefully acknowledged.

References

- Becker, P. & Coppens, P. (1990). Acta Cryst. A46, 258-264.
- Burden, R. L. & Faires, J. D. (1989). Numerical Analysis, 4th ed. Boston: PSW-Kent Publishing Company.
- Doyle, P. A. & Turner, P. S. (1968). Acta Cryst. A24, 390-397.
- Emsley, J. (1996). *The Elements*, 3rd ed. Oxford University Press.
- Fox, A. G., O'Keeffe, M. A. & Tabbernor, M. A. (1989). Acta Cryst. A45, 786–793.
- Grant, I. P. (1970). Adv. Phys. 19, 747-811.
- Ibers, J. A. (1958). Acta Cryst. 11, 178-183.
- Lide, D. R. (1996). Editor-in-Chief. CRC Handbook of Chemistry and Physics, 77th ed. Boca Raton, FL: CRC Press.
- Meyer, H., Müller, T. & Schweig, A. (1995). Acta Cryst. A51, 171–177.
- Mohanty, A. K. & Clementi, E. (1990). J. Chem. Phys. 93, 1829–1833.
- O'Keeffe, M. & Spence, J. C. H. (1994). Acta Cryst. A50, 33-45.
- Parpia, F. A., Froese Fischer, C. & Grant, I. P. (1996). Comput. Phys. Commun. 94, 249–271.
- Peng, L. M. & Cowley, J. M. (1988). Acta Cryst. A44, 1-5.
- Rez, D., Rez, P. & Grant, I. (1994). Acta Cryst. A50, 481-497.
- Su, Z. & Coppens, P. (1994). Sagamore XI Conference on Charge, Spin & Momentum Densities, Brest, France. Abstract Book.
- Wang, J., Smith, V. H., Bunge, C. F. & Jáuregui, R. (1996). Acta Crvst. A52, 649–658.
- Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J. (1994). L-BFGS-B Fortran Subroutines for Large-Scale Bound Constrained Optimization. Department of Electrical Engineering and Computer Science, Northwestern University, IL, USA.